INSTRUCTIONS:
1. REMOVE ADJUSTMENT SCREW FROM IDLER END.
2. REMOVE COVERS FROM DRIVE END AND IDLER END.
3. SLIDE YOKE ASSEMBLY OUT OF IDLER END.
4. THREAD CHAIN THROUGH IDLER END AND THEN THROUGH BOTTOM OF YOKE ASSEMBLY, THEN OVER THE SPROCKET.
5. PLACE IDLER END COVER AGAINST YOKE ASSEMBLY. THREAD ADJUSTMENT SCREW LOOSELY INTO YOKE.
6. SLIDE YOKE ASSEMBLY AND CHAIN INTO IDLER END HOUSING UNTIL IDLER END COVER IS AGAINST THE IDLER END HOUSING, THREADING THE CHAIN THROUGH IDLER END HOUSING.
7. REPLACE IDLER END COVER SCREW. TIGHTEN COVER SCREWS.
8. THREAD OTHER END OF CHAIN THROUGH BOTTOM OF THE DRIVE END ASSEMBLY.
9. ROUTE CHAIN OVER SPROCKET AND BACK THROUGH DRIVE END ASSEMBLY.
10. REPLACE DRIVE END COVER.

COVER PLATE SCREWS
APPLY LOCTITE 222-MS (SIZE 1)
OR 242 (SIZES 2S, 2L, 3 & 4)
CHAIN INSTALLED THROUGH DRIVE ENDS.
SEE MANUAL LPW/PCAMAN OR LPB/PCAMAN
FOR ATTACHING CHAIN TO WHEEL PLATE.
1. Place the wheel plate on the track plate assembly, taking care not to damage the lubricating felts.

2. Slide the wheel plate to one end of the track, ensuring that the drive chain passes under it completely.

3. Pull the ends of the chain together to eliminate as much slack as possible, and attach each end to one of the holes on the chain coupler with the chain master links.

4. Place the assembled chain coupler in the track plate center channel, and position the wheel plate over it.

5. Align the two central mounting holes on the wheel plate with the tapped holes on the chain coupler, and secure the chain coupler to the wheel plate with the appropriate screws.
EXPLODED VIEW OF LUBRICATOR / WHEEL COVER ASSEMBLIES
ECCENTRIC BUSHING ADJUSTMENT

LOAD BEARING SIDE OF WHEEL PLATE (INDICATED BY ARROW)

CONCENTRIC WHEEL BUSHINGS DO NOT NEED ADJUSTMENT

WHEEL PLATE

FLANGED NUTS FOR ECCENTRIC WHEELS

SOCKET WRENCH FOR ECCENTRIC WHEEL FLANGED NUTS

WHEEL STUD WRENCH

ECCENTRIC WHEEL BUSHING
EXPLODED VIEW OF WHEEL PLATE SHOWING WHEEL REPLACEMENT

ECCENTRIC WHEELS

CONCENTRIC WHEELS
(APPLY LOCTITE #242 OR EQUIVALENT TO THREADS PRIOR TO INSTALLATION)

FLANGED NUTS FOR ECCENTRIC WHEELS
ADJUSTMENT OF PRELOAD FOR STUDED GUIDE WHEELS:

THE GUIDE WHEELS HAVE INTEGRATED STUDS AND WRENCH FLATS ON THEIR INNER RACES. THE CONCENTRIC GUIDE WHEELS ATTACH DIRECTLY TO TAPPED HOLES ON THE WHEEL PLATE. THE ECCENTRIC GUIDE WHEEL STUDS PASS THROUGH CLEARANCE HOLES ON THE WHEEL PLATE AND ARE HELD TO THE WHEEL PLATE BY FLANGED HEX NUTS ON THE WHEEL PLATE’S TOP SIDE.

1. CHECK CONCENTRIC GUIDE WHEEL MOUNTING BOLTS FOR TIGHTNESS.
2. USE A SOCKET WRENCH TO LOOSEN THE ECCENTRIC GUIDE WHEEL’S FLANGED HEX NUT JUST ENOUGH TO ALLOW ROTATION OF THE ECCENTRIC WHEEL’S WRENCH FLAT. MAKE THE FOLLOWING ADJUSTMENTS IN SMALL INCREMENTS.
3. PLACE THE WHEEL STUD WRENCH ON THE ECCENTRIC WHEEL’S WRENCH FLAT AND ROTATE THE HANDLE AWAY FROM THE CENTER OF THE WHEEL PLATE TO A POINT WHERE THE GUIDE WHEELS CONTACT THE TRACK.
4. HOLD THE GUIDE WHEEL FIRMLY BETWEEN YOUR FINGERS AND MOVE THE WHEEL PLATE ALONG THE TRACK. AT THE SAME TIME, ROTATE THE BUSHING TO A POINT WHERE THE GUIDE WHEEL DOES NOT SKID ON THE TRACK. TIGHTEN THE FLANGED HEX NUT SNUGLY SO THAT THIS TEMPORARY ADJUSTMENT WILL HOLD.
5. REPEAT THIS PROCEDURE ON THE SECOND ECCENTRIC GUIDE WHEEL.
6. A PROPER ADJUSTMENT IS ACHIEVED BY REPEATING STEPS 4 AND 5 UNTIL A UNIFORM RESISTANCE TO MOTION IS ATTAINED BY “FEEL” ALONG THE ENTIRE TRACK.
7. FULLY TIGHTEN THE ECCENTRIC WHEEL BOLTS TO FIX BOTH ADJUSTMENTS. NOTE THAT BOTH ECCENTRIC WHEELS NEED TO BE ADJUSTED PRIOR TO PERFORMING THIS FINAL TIGHTENING SO AS TO AVOID BINDING OF THE CARRIAGE.
8. APPLY WICKING THREAD LOCKER TO WHEEL BOLT THREADS FROM TOP OF WHEEL PLATE. USE LOCTITE 290 OR EQUIVALENT.
LoPro® BELT OR CHAIN TENSIONING

TO ADJUST BELT OR CHAIN TENSION:
1. MOVE WHEEL PLATE TO DRIVEN END OF SYSTEM.
2. TIGHTEN OR LOOSEN ADJUSTMENT SCREW LOCATED ON IDLER END COVER.
3. THIS WILL SLIDE YOKE ASSEMBLY IN THE IDLER END HOUSING.
4. ADJUST UNTIL DESIRED TENSION IS ACHIEVED.

GENERAL
LoPro system length, load, speed, and acceleration profiles all affect the drive tension required for consistent, trouble-free operation. In general, over-tensioning the system should be avoided to prevent premature wear of drive system components.

BELT DRIVEN LoPro SYSTEMS
The ideal tension in linear drive belt systems is achieved when the tensile force is equal to the transmitted force. The transmitted force is the force in the belt when it accelerates or decelerates the load. The force is equal to the load mass x acceleration + friction

The belt tension can be difficult to estimate while adjusting your LoPro system. The belt should feel firm when pressed upon with a finger, but never be 'guitar string' tight when tapped with a finger. The belt tension is correctly set when the slack side of the belt remains taut under maximum operating load. Belt flap or sagging is indicative of insufficient tension.

CHAIN DRIVEN LoPro SYSTEMS
Horizontally mounted chain driven LoPro systems will have significant variations in chain tensioning requirements, namely due to the varying lengths of the system. For shorter travel lengths, the chain can be tensioned to prevent contact with the track plate. For longer systems, the tension to support the chain weight would be excessive; a wear strip would be required. Chain driven LoPro in sizes 3 and 4 are provided with a UHMW polyethylene strip, which is fixed to the track plate for a reduced friction chain support.
To determine half hole and end spaces:

TPL = Track plate length
L = Track plate mounting hole spacing

\[
\frac{(TPL \times 2)}{L} - .36 = \text{integer number and decimal value}
\]

Integer number/2 = number of spaces
A value with .5 represents a half hole

\[
\frac{(\text{decimal value} + .36) \times L/2}{2} = \text{end spaces}
\]
LoPro System Drive End Mounting

Table:

<table>
<thead>
<tr>
<th>LoPro Drive/Idler End</th>
<th>Mounting Hardware Size</th>
<th>End to Mounting Hole Dim A</th>
<th>Minimum Screw Length Dim B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M3</td>
<td>6.0 mm (.236 in.) Max.</td>
<td>22.0 mm (.866 in.)</td>
</tr>
<tr>
<td>2S</td>
<td>M5</td>
<td>10.0 mm (.394 in.) Max.</td>
<td>30.0 mm (1.181 in.)</td>
</tr>
<tr>
<td>2L</td>
<td>M5</td>
<td>10.0 mm (.394 in.) Max.</td>
<td>35.0 mm (1.378 in.)</td>
</tr>
<tr>
<td>3</td>
<td>M6</td>
<td>13.0 mm (.511 in.) Max.</td>
<td>45.0 mm (1.772 in.)</td>
</tr>
<tr>
<td>4</td>
<td>M8</td>
<td>13.5 mm (.531 in.) Max.</td>
<td>55.0 mm (2.165 in.)</td>
</tr>
</tbody>
</table>

- Apply Loctite 222-MS (Size 1) or 242 (Sizes 2S, 2L, 3, & 4)

- Section A-A

- Customer’s Support Structure

This document is proprietary to the Bishop-Wisecarver Corporation and is for the use of its employees, representatives and customers.